50 research outputs found

    Wave profile and tide monitoring system for scalable implementation

    Get PDF
    A versatile, miniaturized, cost-effective, low-power wave profile and tide monitoring system, capable of long-term and scalable deployment, was developed to integrate pressure and temperature sensors in an RS485 network, for standalone operation with organized memory or real-time shared data monitoring. The pressure and temperature sensors are controlled by low-power microcontrollers, that communicate the data periodically to a datalogger, that depending on the application, store it in a removable SD card or send it to a server via Wi-Fi. The data is then analyzed to compensate for the loss in amplitude sensitivity according to the sensor’s depth. The wave profile can be sampled at a maximum rate of 100 Hz, with a 1 cm resolution. The system was tested successfully in real-life conditions, in rivers Douro and Cávado, and off the coast of Viana do Castelo.João Rocha was supported by the doctoral Grant PRT/BD/154322/2023 financed by the Portuguese Foundation for Science and Technology (FCT), and with funds from Portuguese State Budget, European Social Fund (ESF) and Por_Norte, under MIT Portugal Program. This work is co-funded by the projects K2D: Knowledge and Data from the Deep to Space (POCI-01-0247-FEDER-045941), SONDA (PTDC/EME-SIS/1960/2020), ATLÂNTIDA (NORTE-01-0145-FEDER-000040) and CMEMS - UIDB/04436/2020 and UIDP/04436/2020

    Correlative 3D cryo X-ray imaging reveals intracellular location and effect of designed antifibrotic protein-nanomaterial hybrids

    Get PDF
    Revealing the intracellular location of novel therapeutic agents is paramount for the understanding of their effect at the cell ultrastructure level. Here, we apply a novel correlative cryo 3D imaging approach to determine the intracellular fate of a designed protein-nanomaterial hybrid with antifibrotic properties that shows great promise in mitigating myocardial fibrosis. Cryo 3D structured illumination microscopy (cryo-3D-SIM) pinpoints the location and cryo soft X-ray tomography (cryo-SXT) reveals the ultrastructural environment and subcellular localization of this nanomaterial with spatial correlation accuracy down to 70 nm in whole cells. This novel high resolution 3D cryo correlative approach unambiguously locates the nanomaterial after overnight treatment within multivesicular bodies which have been associated with endosomal trafficking events by confocal microscopy. Moreover, this approach allows assessing the cellular response towards the treatment by evaluating the morphological changes induced. This is especially relevant for the future usage of nanoformulations in clinical practices. This correlative super-resolution and X-ray imaging strategy joins high specificity, by the use of fluorescence, with high spatial resolution at 30 nm (half pitch) provided by cryo-SXT in whole cells, without the need of staining or fixation, and can be of particular benefit to locate specific molecules in the native cellular environment in bio-nanomedicine

    Characterization of Plasma Labile Heme in Hemolytic Conditions

    Get PDF
    The deposited article is the accepted manuscript (post-print version) posted online 7 August 2017 and provided by The Febs Journal. This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. The deposited article version contains attached the supplementary materials within the pdf. This publication hasn't any creative commons license associated, although it is in open access.Extracellular hemoglobin (Hb), a byproduct of hemolysis, can release its prosthetic heme groups upon oxidation. This produces metabolically active heme that is exchangeable between acceptor proteins, macromolecules and low molecular weight ligands, termed here labile heme. As it accumulates in plasma labile heme acts in a pro-oxidant manner and regulates cellular metabolism while exerting pro-inflammatory and cytotoxic effects that foster the pathogenesis of hemolytic diseases. Here we developed and characterized a panel of heme-specific single domain antibodies (sdAbs) that together with a cellular-based heme reporter assay, allow for quantification and characterization of labile heme in plasma during hemolytic conditions. Using these approaches we demonstrate that labile heme generated during hemolytic conditions is bound to plasma molecules with an affinity higher than 10(-7) M and that 2-8% (~2-5 ΟM) of the total amount of heme detected in plasma can be internalized by bystander cells, i.e. bioavailable heme. Acute, but not chronic, hemolysis is associated with transient reduction of plasma heme binding capacity (HBC1/2 ), that is, the ability of plasma molecules to bind labile heme with an affinity higher than 10(-7) M. The heme-specific sdAbs neutralize the pro-oxidant activity of soluble heme in vitro, suggesting that these maybe used to counter the pathologic effects of labile heme during hemolytic conditions. Finally, we show that heme-specific sdAbs can be used to visualize cellular heme. In conclusion, we describe a panel of heme-specific sdAbs that when used with other approaches provide novel insights to the pathophysiology of heme. This article is protected by copyright. All rights reserved.Fundação para a Ciência e Tecnologia grants: (RECI-IMI-IMU-0038-2012, PTDC/SAU-TOX/116627/2010, HMSP-ICT/0018/2011, SFRH/BD/44828/2008, SFRH/BPD/47477/2008, PTDC/SAU-FAR/119173/2010, IF/01010/2013/CP1183/CT0001); ERC grants: (ERC-2011-AdG 294709-DAMAGECONTROL); NHMRC Senior Principal Research Fellowship: (1003484).info:eu-repo/semantics/acceptedVersio

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Subcellular Min Oscillations as a Single-Cell Reporter of the Action of Polycations, Protamine, and Gentamicin on Escherichia coli

    Get PDF
    BACKGROUND: In Escherichia coli, MinD-GFP fusion proteins show rapid pole to pole oscillations. The objective was to investigate the effects of extracellular cations on the subcellular oscillation of cytoplasmic MinD within Escherichia coli. METHODOLOGY/PRINCIPAL FINDINGS: We exposed bacteria to the extracellular cations Ca(++), Mg(++), the cationic antimicrobial peptide (CAP) protamine, and the cationic aminoglycoside gentamicin. We found rapid and substantial increases in the average MinD oscillation periods in the presence of any of these polyvalent cations. For Ca(++) and Mg(++) the increases in period were transient, even with a constant extracellular concentration, while increases in period for protamine or gentamicin were apparently irreversible. We also found striking interdependence in the action of the small cations with protamine or gentamicin, distorted oscillations under the action of intermediate levels of gentamicin and Ca(++), and reversible freezing of the Min oscillation at high cationic concentrations. CONCLUSIONS/SIGNIFICANCE: Intracellular Min oscillations provide a fast single-cell reporter of bacterial response to extracellular polycations, which can be explained by the penetration of polycations into cells

    Honey, a Gift from Nature to Health and Beauty: A Review

    Get PDF
    Benefits of honey are contributed by the composition of its elements such as glucose, fructose, glucose oxidase, vitamins and phenolic compounds. For health, honey can be used to treat wounds due to the antibacterial activity conferred by the hydrogen peroxide produced by glucose oxidase in honey. Anti-inflammatory, anti-oxidant, deodorizing and tissue regeneration activities in honey also help in the wound healing process. It can also be an alternative sweetener for diabetic patients to ensure compliance to a healthy diet. Moreover, honey exerts several effects such as lowering low density lipids and increasing high density lipids, thus reducing risk of atherosclerosis. In terms of beauty, honey can be used on skin and hair. It moisturizes skin through its natural humectant properties contributed by high contents of fructose and glucose. Honey treats acne on the skin due to its antibacterial activity, anti-inflammatory action and tissue repair. The hair can benefit from honey in such a way that the hair has abundance, and becomes easier to comb. However, there have not been as many studies regarding the use of honey in skin in comparison to its use for health. Therefore, future studies on honey could research its use, action and benefits in both cosmetics and dermatology

    Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe
    corecore